Preliminary Findings Policy Tools for Water Pollution Control: Addressing Nutrient Enrichment & Harmful Algal Blooms in Lake Eire

Joshua Filla
Anisha Akella Naga Venkata
Saurabh Kalla
Edward Chiyaka
John Hoornbeek
Center for Public Policy & Health
Kent State University

Resilient Cities Conference
April 22, 2016
Cleveland State University
Cleveland, Ohio

Acknowledgements

The authors would like to acknowledge the following organizations and individuals for their valuable assistance:

- The Ohio State University Water Resources Center and the United States Geological Survey.
- Dr. Joseph Ortiz, Department of Geology, Kent State University.
- Marissa Bland & Kathryn Bland, Center for Public Policy and Health, Kent State University.
- Multiple state and federal water quality officials who have provided insights to inform this work.

Purposes

- Share highlights from preliminary findings* on:
 - Policy tools for nutrient control being implemented in the Ohio Lake Erie Basin
 - Strategies and policy tools used elsewhere which might be considered for Ohio.
 - Lessons and policy tools policymakers & natural resource administrators may want to consider for the Ohio Lake Erie basin.
- Solicit your input regarding questions/issues to be addressed as we complete work this project.
 - Particularly interests in your thoughts on criteria that might be used as basis for recommendations for policy transfer.


^{*}Because findings presented here are preliminary, they should not be quoted or cited as yet with the authors' permission.

Harmful Algae Blooms in Lake Erie

- Have become recurring events
 - Massive bloom in 2011.
 - Major bloom in 2014 contaminated the Toledo Water Supply, creating substantial problems for a major Ohio City.
 - Another record setting bloom this past year (2015).
- ❖Pose risks to human and ecological health (EPA, 2015).
- Result from nutrient flows and insufficient ecological assimilative capacities for nutrients.
 - Phosphorus is a key concern & there are continuing concerns about nitrogen contributions as well.
 - Agriculture a key contributor.
- ❖ There are now multiple discussions and abatement efforts being undertaken to reduce nutrient flows and HABs in the Lake Erie water basin.
 - With this work, we hope to contribute to this discussion.

The Lake Erie Watershed

Methods and Approaches: Overview

- Purpose understand current nutrient reduction efforts and enable lesson drawing from other water basin programs to inform nutrient policy/management in the Lake Erie basin.
 - Potential beginning of larger effort to identify policy tools for responding to climate change impacts associated with nutrients.
- Collection of descriptive data and information.
 - Inventory current efforts and policy tools used for nutrient reduction in Ohio Lake Erie Basin.
 - Screen and assess watershed management strategies and policy tools for nutrient control in other American watershed basin programs.
 - Compare policy tools in Lake Erie basin to those in other watersheds. Looked most deeply at:
 - Chesapeake Bay Program (CBP)
 - Long Island Sound Study (LISS) Program
 - Tampa Bay Estuary Program (TBEP)

Preliminary Findings: Inventory of Nutrient Controls in NE Ohio

A. Regulatory Policy Tools

- 1. Traditional NPDES permitted wastewater discharges 1,148 permits in the Lake Erie Basin (excludes storm-water & "CAFO's)
 - a. 102 (9%) are "majors"
 - b. 1046 (91%) are "minors"
 - Assessed final effluent limits on nutrients & monitoring requirements for these permits.
 - All "traditional" discharging wastewater systems.
 - Publicly Owned Treatment Works (POTWs), which are likely to discharge nutrients.

Preliminary Findings: NPDES Permits Discharging to Lake Erie Water Basin

	Nutrient Final E (N or P o	Total	
	Yes	No	
Major Permits	83	19	102
	(81%)	(19%)	(100%)
Minor Permits	599	447	1046
	(57%)	(43%)	(100%)
Total	682	466	1148
	(59%)	(41%)	(100%)

^{*}Of the 102 major permits, 56 are Publicly Owned Treatment Works (POTWs) which typically discharge P and N.

Preliminary Findings: Point Source Controls on Phosphorus

		Phosphorus Final Effluent Limit? (P)		Total
		Yes	No	
POTWs	Majors*	55 (98%)	1 (2%)	56
	Minors	17 (9%)	170 (91%)	187
Non- POTWs	Majors	24 (52%)	22 (48%)	46
	Minors	9 (1%)	850 (99%)	859
	Total	105 (9%)	1043 (91%)	1148

^{* 10} of 56 (18%) of Major POTWs have average monthly Total P concentration limits of less than 1 mg/l.

Preliminary Findings: Inventory of Nutrient Controls in NE Ohio

A. Regulatory Policy Tools – continued.

- Permitted Storm-water Discharges
 - a. 53 Lake Erie basin communities with CSOs
 - b. Other storm-water permits in counties in the basin include:
 - 1. Municipals phase 1 & 2 = 135
 - 2. Construction General Permits = 6,942 covered
 - 3. Industrial Storm-water = 1,265 covered
- 3. Agriculture Permits in Ohio (CAFO's/CAFFs)
 - a. 12 (of 35) NPDES covered CAFO's are in Ohio Lake Erie Basin
 - b. 113 ODA permitted Livestock operations are in Ohio Lake Erie basin.
 - Other agricultural operations subject to regulatory intervention when/if problems identified.
 - Distressed Watersheds Rules (2010)

Preliminary Findings: Inventory of Nutrient Controls in NE Ohio

B. Financial Expenditures Relating to Nutrient Reductions

- Federal and State Funds for point sources:
 - Water Pollution Control Loan Fund \$452 million in loans and grants for point sources, statewide, in 2014.
- Federal funds for non-point source nutrient reduction programs:
 - a. Four federal agencies 16 programs focus on nutrient reduction.
 - b. Agriculture 7 programs, \$90.1 million statewide in 2014.
 - c. USEPA, USDOI, & NOAA 9 programs, \$33.1 million in Lake Erie Basin in 2014.
 - 3. State of Ohio funds for non-point source nutrient reduction.
 - a. Six state agencies 14 programs, \$21.1 million in 2014.

Preliminary Findings: Inventory of Nutrient Controls in NE Ohio

C. Management of Policy Tools

- Lots of Organization-based tools identified:
 - a. Multiple state agencies (6) support nutrient reduction efforts.
 - b. Ongoing engagement with *federal agencies (4)*, in addition to Great Lakes National Program Office coordination.
 - c. Cross-state engagement with other States (Great Lakes Governors Association, etc.)
 - Cross-national engagement with Canada, via International Joint Commission and implementation of the GLWQA.
- 2. Maybe too many organizations -- multi-organizational coordination framework does not appear strong.

Preliminary Findings: Programs with "Effectiveness" Focus

 Common Characteristics -- CBP, LISS, TBEP:

-A single "institutional home" for basin-wide assemblage of information on nutrient management problems and interventions.

- -This "institutional home" may coordinate:
 - -Scientific efforts to guide interventions and to identify priority areas to reduce nutrients.
 - Systems for tracking implementation progress and performance, and then reporting on it.
 - Includes mechanisms for updating that information and making it available.

Preliminary Findings: Policy Tools Used in Other Basins

- Policy tools used in other basin programs, but not in Ohio Lake Erie basin:
 - a. Regulatory Tools:
 - a. More stringent AFO regulatory requirements (CBP-MD)
 - Water Quality Standards, an impairment designation, and TMDL processes (CBP States)
 - c. WQ trading policies/"bubble" policies (LISS, CBP states)
 - d. Agriculture Uncertainty programs (CBP VA & MD)
 - e. State fertilizer requirements (TBEP FL)
 - b. Financial Investment Tools
 - a. Budget Surplus set-asides (CBP-VA)
 - b. Private sector funding (TBEP)

Preliminary Findings: Policy Tools Used in Other Basins - continued

- Management Frameworks for Policy Tools used in other basin programs, but not in Ohio Lake Erie basin:
 - Centralized basin-wide administration & implementation management
 - b. Water Quality Standards for Nutrients & TMDLs
 - c. Implementation action tracking & accountability framework
 - d. Broad-based Nutrient Management Consortium.

Lessons for Lake Erie Policymakers

- There are multiple authority-based tools in place (regulations), but they are not comprehensive.
 - Minor permits without limits on phosphorus.
 - Major POTW permits not as stringent as they might be?
 - More could be done to monitor and upgrade storm-water and agriculture interventions?
- Spending lots of \$ (\$100's of millions annually) is more money the answer?
- Other US basin-wide programs CBP, LISS Program, & TBEP
 offer lessons & policy tools which may be considered.
 - Integrated institutional responsibility for management information, scientific enterprises, etc.
 - Tracking and accountability appears necessary for measure and perhaps progress as well.
- There are also other policy tools that can be considered, a number of which are used in other basin-wide programs.
 - More stringent agricultural regulations.
 - WQ trading policies to reduce costs and generate incentive for NPS actions.
 - WQ standards, impairment designation, and TMDL(s), perhaps after crossnational allocations are made through "Annex 4" process?

Final Thoughts

- ❖ There have been multiple responses to the Toledo water supply crisis since last year.
 - They are to be commended, but not alone -constitute a good long term strategy.
- Current nutrient management efforts in the Ohio Lake Erie Basin are substantial, but they are not sufficient.
 - We have continuing HAB problems, and responses that look more like "stove-piped" efforts than a cohesive "watershed-based" approach.
- Other US basin-wide programs Chesapeake Bay, Long Island Sound, TBEP -- offer lessons and policy tools which can be considered.

