Levin Urban.csuohio.edu

Energy Systems, Uptime and the Digital Economy

Chicago EDA Conference June 23, 2020

Andrew R. Thomas

Mark Henning

Energy Policy Center

Levin College of Urban Affairs

Cleveland State University

Energy System Implications for IT and IoT

- Power outages are #1 cause of IT downtime.
 - Industries lose upwards of \$709,000 per IT outage caused by power supply failure (Ponemon Institute).
- Sectors sensitive to power reliability have the highest employment growth.
 - Highest Value of Lost Load (VOLL): Health Care, Finance & Insurance
 - Will add around 40% of the non-agricultural employment growth nationally by 2026. Bureau of Labor Statistics
 - These sectors expected to be major drivers of demand for UPS systems as they increasingly incorporate the internet-of-things (IoT).

What is a Microgrid?

A microgrid is a contained energy system capable of balancing captive supply and demand resources to maintain reliability

- Defined by function, not size
- Incorporates multiple distributed technologies
- Maximizes reliability and efficiency
- Can include other utilities steam, hot water, chilled water, network connectivity
- May function in "islanded mode" disconnected from larger utility grid

No Power to the People

National Academy of Science Report on Nation's Electricity System

 "Recommendation 1 to DOE: Improve understanding of customer and society value associated with increased resilience...."
 September 2017.

So Why the Poor Understanding?

- Complexity of Electricity Pricing.
- Lack of Uniformity in Regulation or Industry Terminology.
- Value of Resiliency
 Highly Dependent upon
 Circumstances.

Urban.csuohio.edu How Can We Value Resiliency?

- 1. Avoided Costs: Maintaining Back Up and Standby Power Systems
 - Diesel Generation
 - Batteries and Uninterruptible Power Supply (UPS) systems
- 2. Value of Lost Opportunity
 - Value of Lost Load Calculation: $VOLL = \frac{\text{GDP (or Output) for Industry (\$)}}{\text{Electricity Consumption for Industry (kWh)}}$
- 3. Survey: What Are Commercial End Users Willing to Pay for Enhanced Uptime?

Value Based Upon Avoided Costs

Value Based Upon Lost Production

Value Based Upon National Survey of End Users

Who Might Be Interested in Grid Resiliency?

- Universities
- Data and Financial Centers
- Law, Accounting,
 Consulting Firms
- Hospitals
- Emergency Services
- Food Services
- R&D Companies

Role of Uptime in the new economy: 40% of non-agricultural economic growth projected to be in health, finance and insurance services

Levin Urban.csuohio.edu

Proposed Downtown Cleveland Microgrid District

- Potential anchor end users
- Ability to leverage existing infrastructure
- Ability to grow both loads and infrastructure
- Economic relevance of areas
- Available land for new infrastructure and end users
- Regulatory compatibility

μGrid Cle

Sensitivity Analysis For Three Tier Customer Rate Structure

Economic Impact of Microgrid in Downtown Cleveland

Assumptions:

- Direct jobs only
- 20% of 48 MW grid reserved for new development
- Growth in high VOLL subsectors increases from 10 year city average to national average
- Jobs created based upon average per kW per employee for each industry (Census Bureau)

Associated additional earnings of \$91 million within the μGrid by 2026.

Energy Policy Center

Andrew R. Thomas

a.r.thomas99@csuohio.edu

Mark Henning m.d.henning@csuohio.edu

"The Economic and Fiscal Impact of a Microgrid in Downtown Cleveland, Ohio" (2018). *Urban Publications*. https://engagedscholarship.csuohio.edu/urban_facpub/1560

Total Savings Due to Deregulation of Electricity in Ohio 2011-2018 (millions of dollars)

Year	Shopping	SSO Auction	Total
2011	\$496.70	\$2,395.00	\$2,891.70
2012	\$443.29	\$2,366.00	\$2,809.29
2013	\$744.11	\$2,342.00	\$3,086.11
2014	\$824.21	\$2,380.00	\$3,204.21
2015	\$645.19	\$2,339.00	\$2,984.19
2016	\$540.77	\$2553.90	\$3,094.67
2017	\$403.59	\$2,502.10	\$2,905.69
2018	\$353.40	\$2,612.60	\$2,966.05
2011-2018	\$4,451.11	\$19,490.60	\$23,941.71

"Customer Competition Continues to Outperform Traditional Monopoly Regulation" (2019). https://engagedscholarship.csuohio.edu/urban_facpub/1618

Cumulative Shale Related Investment In Ohio 2011-2019

Shale Investment Dashboard in Ohio Q1 and Q2 2019" (2020). https://engagedscholarship.csuohio.edu/urban_facpub/1659

Potential Demanders and Nuclear Fleet Suppliers of Hydrogen in the Midwest

"How the Midwest Can Lead the Hydrogen Economy" (2020). https://engagedscholarship.csuohio.edu/urban_facpub/1656